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RELATIVISTIC CHARGED FLUID FLOW 

II: Generalized Larmor and Helmholtz Theorems 

by 

Lawrence A. Schmid 

ABSTRACT 

The covariant Larmor theorem is derived within the framework of Special 

Relativity for an inviscid charged fluid i n  the presence of an arbitrary electro- 

magnetic field and a gravitational field which is described by a simple scalar 

potential. The flow need not be adiabatic and the fluid need not be barotropic. 

The covariant form of the Larmor theorem, which is an antisymmetric tensor 

equation, is equivalent to two 3-vector equations, one of which is the fluid equa- 

tion of motion. The other is just the familiar 3-vector statement of the Larmor 

The relativis- 
-. -7 

I theorem except for an extra precession that is thermal in origin. 

tic Helmholtz equation is derived from the covariant Larmor theorem. The vor- 

ticity is defined as  the curl of the usual canonical momentum of a charged par- 

ticle in an electromagnetic field except that the particle res t  mass is a variable 

that includes contributions that a r e  proportional to the gravitational potential and 

the specific enthalpy oi the fluid. For this definition of the vorticity it is found 

that the vorticity flux diffuses through the fluid except when the flow is isentropic. 

It is shown, however , that when an appropriate thermal 4-potential is included in 

the definition of the canonical momentum, the vorticity flux remainsfrozen in 

the fluid even when viscosity is present and the flow is nonadiabatic. A micro- 

scopic interpretation of this generalized Helmholtz equation is given. 
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RELATIVISTIC CHARGED FLUID FLOW 

11: Generalized Larmor and Helmholtz Theorems 

I. INTRODUCTION 

In the preceding paper," henceforth referred to as I, it was shown that the 

entropy-dependent force terms in the relativistic equation of motion could be 

expressed in terms of an antisymmetric entropy force tensor whose dynamical 

role is analogous to that of the electromagnetic field tensor. This analogy is 

most clearly evident in the relativistic statement of the Larmor theorem for a 

charged inviscid fluid, which is derived in Section I1 of the present paper. 

Use of the entropy force tensor also makes possible the derivation of the 

relativistic generalization of the Helmholtz equation for  the time dependence of 

the fluid vorticity. This is carried out in Section III. In the form of the Helm- 

holtz equation derivedin Section 111, the vorticity is defined as the curl of the 

canonical particle 4-momentum p v j  t (q/c)AJ where pis the particle rest mass,  

including contributions from the gravitational and thermal energy, q is the parti- 

cle charge, and .4j is the electromagnetic 4-vector potential in Gaussian units. 

A s  in I, v J  denotes the particle 4-velocity and c, of course, is the speed of light. 

The form of the Helmholtz equation in terms of a vorticity defined as the 

curl  of p v j  t (q/c) A' has the disadvantage that the vorticity so defined is in 

general not simply carried along with the fluid flow, but rather diffuses across 

*GSFC X-641-65-380. 
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flow lines. In Section IV, however, i t  is shown that i t  is possible to define the 

vorticity in such a way that no diffusion occurs. The vorticity having this prop- 

erty is defined as the curl of a generalized canonical momentum that includes 

not only the contribution (q/c)AJ from the electromagnetic field, but also an 

analogous contribution that accounts for viscosity as well as for the entropy- 

dependent forces. 

Notation 

The notation employed will be the same as that used in I with the exception 

of a modification in the notation for temperature. Inasmuch as we have com- 

mitted ourselves to a 4-vector description of temperature, it would be desirable 

to introduce a notation that is analogous to that for particle mass  and density. 

In the fluid rest frame these are designated by m and p respectively, and in the 

observer's frame by m* and p*. Thus temperature in the fluid r e s t  frame will 

be designated by T (instead of as in I), and in the observer's f rame by T* (in- 

stead of T). Equation (3.12) of I will now be written 

TJ z T V J / C  = T"(1, v / C )  (1.la) 

where 

T*= r T ,  (1.lb) 

and 

r = ( i -  v2/c2)- 1 / 2  (1.lc) 

Similarly, the heat reservoir will be described by the 4-vector TJ where 
R 

* T J  = TR V ~ / C  = T R ( l ,  v,/c), 
R 

2 
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* T, = rR T ~ ,  (1.2b) 

rR = (1 - V ; / C ~ ) + / ~ ,  (1.2c) 

where obviously v R  is the 3-velocity of the reservoir,  TR is its temperature in 

its own rest-frame, and T* is its temperature in the observer's frame. The 

4-vector T J  must satisfy the reversibility condition given in (4.27a) of I: 
R 

R 

vj  T J  = v j  TJ = c T .  
R (1.3) 

As  in I, the antisymmetric electromagnetic field tensor F J k  is expressed in 

terms of the electric and magnetic field intensities E and B as follows: 

If A J  is the electromagnetic 4-potential, then 

In terms of the scalar potential A" and the 3-vector potential A 

A' = (A", A ) .  

From (1.4) - (1.6) it follows that 

(1.4a) 

(1.4b) 

(1.7a) 

(1.7b) B = U x A .  
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We shall have occasion to decompose the tensor FJ into the two antisym- 

metric tensors FJk and FJk which are its parallel and normal projections with 
,. 

respect to the 4-velocity v J .  The tensor FJk is characterized by the condition 

,. 
Thus the electromagnetic'force calculated using Fj 

lated from FJ k .  The condition (1.8a) alone does not suffice to specify FJ 

is the same as that calcu- 
,. 

uniquely. I 

It must be augmented by the condition that in the fluid rest frame the space-space 

components of FJ vanish, i.e. 
A 

(1.8b) 

From (1.8a) it follows that 

( 6 1 0 ,  $ 2 0 ,  $ 3 0 )  v = o  = E ,  (1.8c) 

0 

where E is the electric field intensity in the fluid rest frame. It is easily veri- 

fied that FJ must have the following form: 

GJk = (FJ' v' vk t v J  vd FXk)/c2 ; (1.9a) 

o r  

where 

(1.9b) 

(1.9c) 

(1.9d) 
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h 

Note that E is just the effective electric field intensity that appears in the rela- 

tivistic form of ohm's Law. 
b 

- 
The antisymmetric tensor F 1 is given by 

From (1.4) and (1.9) we find 

where 

In the fluid res t  frame we have 

(1. loa) 

(1 .lob) 

(1.1Oc) 

(1.10d) 

(1. lla) 

(1.llb) 

Thus FJ 
that in the fluid r e s t  frame depend only on 

and B as the effective electric and magnetic field intensities. 

is the tensor to be associated with effects such a s  Larmor precession 

and not on g .  We shall refer to E 

s 

Fluid Rotation Tensor 

A s  a preliminary to deriving the relativistic Larmor theorem in the next 

section, we shall now discuss the rotation tensor for the fluid. Firs t  we note that 

i f  Xj = (0, r ) is the space-time displacement between two points that a r e  observed 

simultaneously (Xo = c A t  = 0), and if one point is rotating about the other (the 
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origin) with angular velocity R as seen by an observer for whom the origin has 

the velocity v , then 

dr /d t  = R x r . (1.12) 

The left side of (1.12) may be put into covariant form by noting that d7 = d t / r  

where d7 is the proper time interval in the r e s t  frame of the origin. Thus 

!? dr /d t = dr /d7. If we now introduce an antisymmetric tensor whose space- 

space components are given by 

(1.13) 

then (1.12) can be written in the following covariant form: 

The space part  of (1.14) is just (1.12). It follows from the antisymmetry of nJk 

that 

1 1 
2 2 

O = X j  dXJ/d7 =-d(Xj XJ) /d7=-dr2 /d7 .  (1.15) 

I 

This is the necessary condition that the length of the radius vector of a rotating 

point be constant. 

It is well known that the non-relativistic definition of Q i n  the case of a fluid 

is given by R = ( 1/2) V X  v .  The obvious covariant generalization of this is 

(1.16a) 
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( n 1 0 ,  n20, n30) = [ a  ( r  (1.16b) 

The last equality in (1.16~) constitutes the definition of the angular velocity R 

in the relativistic case. The factor r has been inserted into this definition in 

order to give ( 1 . 1 6 ~ )  the same form as  (1.13). 

In the same way that we decomposed F J k  , we shall decompose n J k  into two 

antisymmetric tensors 6 J k  and h J k  which a r e  the parallel and normal projec- 

tions with respect to V J  . The tensor nJk is defined by the conditions 
,. 

and 

(1.17a) 

(1.17b) 

The last step of (1.17a) follows from (1.16a) above and (1.5), (1.6a) of I. It is 

easily verified that J has the following form: 

A 

n j k  ( n J  .,t V{ Vk t V J  v { n { k ) / c 2  

= [ ( d  vJ/dT) vk - ( d  vk/dT) v J I  /2c2 ; 

or 

(fi", f i 2 0 ,  h30) = (r2/2c) d V/d7, 

( f i 2 3 ,  6 3 1 ,  f i12 ) = r ~ ,  

(1.18a) 

(1.18b) 

(1.18~) 
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(1.18d) 

where D = r-'(d/dT) i s ,  as defined in (1.6b) of I, the substantial time differentia- 

tion operator in the observer's frame. Note that Q,is just the well-known 

Thomas precession. 

The antisymmetric tensor h J k  is given by 

A 

E l k  f l i k  - n J k .  (1.19) 

From (1.17a) and (1.19) 

- 
R J k  Vk = 0 .  (1.20) 

Any antisymmetric tensor satisfying the condition (1.20) has only three degrees 

of freedom and can be written in the form 

(h10, ?PO, f i 3 o )  = (rlc) 6, (1.21a) 

( $ 3 ,  s231,  $ 2 )  E r6, (1.21b) 

where (1.21b) constitutes the definition of the 3-vector 6 in terms of the space- 

space components of E l k .  From (l.19)7 ( 1 . 1 6 ~ ) ~  (Llgc) ,  and (1.21b) it follows 

that 

R = h  t R,. (1.22) 

In the next section we shall see that 6 is the fluid rotation that is produced by 

the magnetic and thermal fields plus the residual rotatiori that has been retained 

8 



from the initial conditio s of the fluid. Equation (1.22) simply says that in order 

to arr ive at the total rotation a, we must also include the Thomas precession Q,. 

Entropy Force Tensor 

It will be necessary to carry out the same kind of decomposition for the 

entropy force tensor O J k  which in (5.12) of I was defined as 

From (4.26a) of I we have, making the notation change noted in writing (l.l), 

or 

Ti = (T/c) (v' t w J ) ,  

T i  = T" [ ( l  t v  - w / c 2 ) ,  (V ~ w ) / c ]  

(1.24a) 

(1.24b) 

where T* = rT is the temperature in the observer's frame and v t w = v R  is the 

reservoir 3-velocity. The 3-velocity w is obviously the drift velocity with re- 

spect to the fluid. Using (1.24) and (1.23), we arr ive at the following relations: 

@Ik = (T/c) [ ( V I  t w J )  ak s - (vk t w k )  3' S I  ; (1.25a) 

(O", 0 2 0 ,  0 3 0 )  = T" 17 s t (T"/c2) [ (v t w )  as/a t  t (v * w )  O S ]  ; (1.25b) 

The tensor 6Jk is defined by the conditions 

9 



and 
I 

($3, 6 3 1 ,  6 1 2 ) " = o  = 0 ,  

where the second step of (1.26) follows from (5.13) of I. Thus 

hJk = (@J4 ~4 vk + vJ v t  atk)/c2 (1.28a) 

= (T/c) [(wJ &'c2 - a J  s )  vk - (wh s/c2 - Jk s) v J  1 ; 

($0, $ 0 ,  $0) r 6 ,  (1 .28~)  

(1.28b) 

($3, (331,  $12) = r 0 (1.28d) 
I 

I where 

6 1 T V s  t ( m c 2 ) - l  [ ( m T * s )  w t ( m T a s / a t - m T * s v  . w / c 2 ) v 1 .  (1.28e) 

The antisymmetric tensor GJ is given by 

@k @jk - G J k .  

From (1.26) and (1.29) it follows that 

G J k  Vk = 0. 

Using (1.25) and (1.28) in (1.29) we find 

@J : (T/c) [wJ ( ak s - vk &/c2) - wk ( a J  s - vk & / c 2 ) ]  ; 

( 6 1 0 ,  ~ 2 0 ,  (330)  - - r6 v / c ,  

( G 2 3  G 3 1  (312 , , ):r%, 

(1.27) 

(1.29) 

, 

(1.30) 

(1.31a) 

(1.3 l b )  

(1.31~) 
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where 

6 = (T V s + T* 4 v/c2) x W/C.  (1.31d) 

It is evident that OJ can be written in  terms of the 3-vector 6 and 6 as follows: 

(@lo, 02”, 0 3 0 )  = r (6 - 6 ( 1.3 2a) 

0 3 1 ,  el2) = r (6 Q (1.3 2b) 

Note that in the above relations the relative velocity of the reservoir W J  or 

w may be replaced by the thermal force ‘pJ o r  p by means of the relation (4.23) 

of I: 

‘pJ = (mT&’c2) w J  ; 

p = (mT&’c2) w .  

(1.33a) 

(1.33b) 

Gravitation 

I t  would be desirable to include the effects of gravitation to the extent that 

they are of importance in practical magnetofluid-dynamical problems. For  this 

purpose General Relativity is not needed. A simple flat-space co-fariant scalar 

theory will suffice. A variety of such theories have been d e ~ e l o p e d . ~  The first 

and simplest of these, and the one that w e  shall employ, is Nordstrom’s t h e ~ r y . ~  

This theory requires that the rest mass ,u of a particle be exponentially dependent 

on the scalar gravitational potential G, i.e p = m exp (Wc’) where m is a constant. 

The necessity for this dependence follows from the equation of motion (in the 

absence of all fields but the gravitational one): d(pvJ d 7  = ,uaJG. Contraction 

with V,  gives dp/dr = ( p / c 2 )  d G/d7, and integrating this yields p = m exp (C/c2)  

Y 
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where m is the integration constant. Note that if  the equation of motion had been 

taken as d ( p v J ) / d T  = m a J  G ,  where the coupling is given by the constant mass  m 

ra ther  than the variable mass  p ,  then we would have been led to the linear rela- 

tion p = rn (1 + G / / c 2 )  rather than the exponential one given above. The difference 

between these two relations is of order rn ( C / c 2 ) * ,  which for our purposes is com- 

pletely negligible. Thus we shall adopt the simpler linear relation, although in 

principle the exponential one is preferable because it is consistent with the Equi- 

valence Principle in that the same mass p that describes the inertial properties 

of the particle also describes the strength of its coupling to the gravitational 

field. 

Referring to (5.11) of I, we recall that the variable particle mass  m = 

rn (1 + h/c2) both determined the inertial properties of the particle and also 

served as a thermal potential function. We may now define a total particle rest 

mass  p that includes both the gravitational and thermal contributions as follows: 

p = rn (1 t C/c2 t h/c*) ,  (1.34) 

with the result that 

a J p c 2  : r n a J G t r n a J h .  (1.35) 

Thus the 4-gradient of the variable particle rest energy p c2  gives both the gravi- 

tational force and the enthalpy-dependent thermal force. The fluid equation of 

motion including gravitation is just (5.17) of I with h replaced by p:  

(1.36) 

12 



Because no assumption has been made regarding the equation of state of the 

fluid, we a r e  not restricting ourselves to the most commonly considered special 

case of a barotropic fluid. 

In the next section we shall find that the forces arising from G and h a r e  

represented in the relativistic Larmor theorem by means of the tensor GJ which 

is defined as follows: 

(G'O, GZo , G30 ) = - r [v(c th)  + a ( ~ + h ) / ~ 2  a t ] ,  (1.3 7b) 

(G23, G31, C12) = - r V (C th) x v / c .  (1.37~) 

Because ( C23, C3' 9 G12 )v=O = 0, we have for the tensors G J and C J  that 

a r e  analogous to the tensors ilk and F j k  in the case of the electromagnetic 

field 

h 

G J k  G J k  (1.3 8 a) 

and 

C j k  = 0 .  (1.3 8b) 

13 



11. LARMOR THEOREM FOR INVISCID FLOW 

In this section and the next one we shall neglect the effects of viscosity. 

Thus we assume that in (1.36) 

2k  S J k  0 

where S J k  is the viscosity stress tensor. 

As a preliminary to rewriting the fluid equation of motion (1.36), we note 

that the two terms of this equation that involve the variable particle mass p can 

be rewritten as follows: 

)/dT - 31 ( p c 2 )  = - [aJ  (pv') - ak (pv') J 1 V k .  (2.2) 

(2.1), and (2.2), w e  find that (1.36) can be written in the fol- Making use of (1.5), 

lowing form: 

[ ( a J  pk - ak p') t ( d c )  oJk1 Vk = 0 

where pJ is the canonical particle momentum defined by the relation 

pJ = p V J  t ( d c )  A J  = (PO, p ) ;  

po = ( p *  c2 t qAo/c), 

P = ( P * V  t q A / c ) ,  

where p *=  rp is the variable particle mass in the observer's frame. 

(2.4a) 

(2.4b) 

( 2 . 4 ~ )  

1 5  



We now introduce the antisymmetric canonical vorticity tensor VJ  k ,  defined 

as follows: 

(2.5b) 

(v23, V 3 l ,  Vl2) = 17 X Q v ;  ( 2 . 5 ~ )  

where (2.5b) and (2 .5~)  constitute the definitions of the 3-force F and the 3- 

vorticity V in terms of the components of V J k  . 

We note now that (2.3) implies that 

where vJ 

condition 

is an antisymmetric tensor that is undetermined except for the 

which implies that it can be written in terms of a completely arbitrary 3-vector 

v as  follows: 

( v ~ ~ ,  ~ 3 l ,  d 2 )  r v .  (2.8b) 

W e  shall see that v J k  can be interpreted as the tensor that describes the residual 

rotation of the fluid, i.e. that part of the total rotation n j k  that is not produced 

by the action of the external fields on the fluid, but ra ther  must be regarded as 

one of the initial starting conditions of the fluid which has been preserved 

16 



. 
unchanged. (It was to enhance this interpretation that in (2.6) the factor 2p was 

inserted in front of u J k  .) 

Using (1.32), (2.5), and (2.8), we can rewrite (2.6) as the following two 3- 

vector equations: 

(2.9a) 

v = (m*/c) (6 t 6 x  v/c) t 2 p *  v .  (2.9b) 

The first of these is an alternative form of the equation of motion. The second 

expresses the canonical 3-vorticity V in terms of the residual rotation v and 

the effects of the entropy-dependent forces. 

Using (1.16a), (1.37a), and (2.4a) in the definition of V J k  given in (2.5a), we 

arr ive at the following relation: 

Making use of this to eliminate VJ  

generalization of the Larmor theorem for inviscid flow of a charged fluid: 

in (2.6), we arrive at the desired relativistic 

.QJk = ( q / 2 p c )  F J k  t ( m / 2 p c )  GJk t ( m / 2 p c )  @ I k  t v J k .  (2.11) 

The first term on the right is the covariant representation of the familiar Larmor 

precession. The second and third terms are completely analogous precessions 

that are produced by the p-dependent and entropy-dependent forces respectively. 

(By "p-dependent force" we mean, of course, the sum of the gravitational and 

enthalpy-dependent forces.) The last term on the right side is completely un- 

determined except for the condition (2.7). Obviously this represents the fluid 
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rotation that would be present in the absence of any forces, and so  must be re- 

garded as an  initial starting condition of the fluid. Note that the tensors GJk and 

OJ 

form as that of FJ 

have been defined in such a way that their coefficients in (2.11) have the same 

except that thc charge q is replaced by the mass m .  

The physical significance of (2.11) becomes most apparent i f  it is decomposed 

into one equation in which all the space-time components vanish in the fluid rest- 

frame, and a second equation in which all the space-space components vanish in 

this frame. The first of these equations is 

and the second is 

Using (l.lOc), (1.21b), (1.31c), and (2.8b), we find that the space-space par t  

of (2.12) is equivalent to the following 3-vector statement of the Larmor theorem: 

where B is the effective magnetic field defined in (1.10d) and 0 is the analogous 

thermal field defined in (1.31d). Note that the p-dependent force, which is a 

potential force, produces no precession in the fluid. As  indicated in (1.22), the 

total rotation R differs from the e given above only by the Thomas precession 

R,. The 3-vector equation that corresponds to the space-time components of 

(2.12) is obtained simply by taking the vector cross-product of (2.14) with the 

fluid 3-velocity v . 

18 
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Using (1.9b), (1.18b), ( 1 . 2 8 ~ ) ~  and (1.37b), we find that the space-time par t  

of (2.13) is equivalent to the following 3-vector equation: 

,. 
p*dv/d-r = - m O ( G t h )  t q E  t m 6  - v a  [ m ( G t h ) / c 2 I / a t ,  (2.15) 

where E is the effective electric field intensity defined in (1.9d) and Q is the 

analogous entropy force defined in (1.28e). This is an alternative form of the 

fluid equation of motion that is characterized by the fact that the particle mass 

p* , which includes the speed-dependent mass increase, stands outside the time 

derivative on the left. 

W e  can cast  this equation of motion into a more explicit form by making 

use of (1.9d), (1.28e), and (5.2) of I: 

p* p* D~ = - p m v c  - OP + p * q  [ ( E - B ~ ~ / c )  - ( E .  V )  v / c 2 1  

t (p* T *  m D  s/c2) w .  (2.16) 

The last term on the right side of (2.16) is a force that arises when heat 

energy is transferred from the reservoir to the fluid. This energy has a mass 

associated with it, and the time rate at which heat mass  is injected into unit 

volume of the fluid is p* T * m D s / c 2 .  Because this mass has the velocity w rela- 

tive to the fluid, its absorption produces a drag force (p* T * m D s / c 2 )  w that tends 

to accelerate the fluid in the direction of the reservoir velocity. 
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As w a s  pointed out in Section IV of I ,  this drag force performs the work 

(p* T *mDs/c2) w - v per  unit volume of the fluid. Work is also performed on the 

fluid by increases in the gravitational potential G and the pressure P. (cf. (2.18) of I). 

These three forms of work, unlike work performed by the electromagnetic field, cause 

an increase in the rest-mass of the fluid. Such an increase in rest-mass, with- 

out the application of a corfesponding force to accelerate the newly added mass 

to the fluid velocity, causes the fluid to decelerate so as to conserve its momen- 

tum. This effect results in a drag force in the direction - v .  This is the explana- 

tion of the next-to-last term on the right side of (2.16). 

We have shown that the Larmor theorem (2.14) and the equation of motion 

(2.16) a re  par ts  of a single tensor equation given in (2.11) that may be regarded 

as the covariant statement of the Larmor theorem. The contraction of (2.11) 

with the fluid 4-velocity yields the 4-vector equation of motion given in ( 1 . 3 G )  

(for ak SJk = 0). W e  shall now apply this formalism to derive the relativistic 

generalization of the Helmholtz equation for inviscid flow of a charged fluid in 

the presence of electromagnetic and gravitational fields. 

20 



IIt. HELMHOLTZ THEOREM FOR INVISCID FLOW 

A s  a preliminary to deriving the generalized Helmholtz equation, we must 

first derive an alternative to the expression for F given in (2.9a). If we define 

the 3-vector g'as 

(3.1) - 1  0 = 5  + 6  x v / c ,  

then it follows from (1.25~) and (1.32) that 

With this we can derive the following alternative to (1.25b): 

From (2.5), (2.6), (2.8), and (3.2) we find 

F = c ( V l 0 ,  V20, V30) = v x V t ( m T  V s ) K  t ( m T  s / c 2 ) ( v  W) (3.3a) 
* 

where 

Equation (3.3a) is the desired expression for  F.  

The covariant vorticity conservation equation is 

which follows immediately from the form of the definition of V I k  given in (2.5a). 

21 



(3.4a) is equivalent to the following two equations: 

v . v = o ;  

w a t  = v x  F .  

(3.4b) 

(3.4c) 

Using (3.3a) in ( 3 . 4 ~ )  we have 

a v / a t  = O x  (v x V) V x  [ ( m T V s ) / T l +  V X  [ ( rnTs /c2 ) (v  t w ) ] .  (3.5) 

Substituting (3.4b) and the continuity equation 

into the identity 

v x (v x V) = - v * v v -t v (V. V) t v - v v - V( v - v )  (3.7) 

and using d e  resulting relation in (3.5)? we arrive at the generalized Helmholtz 

equation: 

D(V/p*) = (VIP*)  . V v  + ( l / p * ) V  x [ ( I  - v 2 / c 2 )  mT*VsI 

where i n  the last two te rms  we have made use of the fact that T/I' = (1 - v2/c  2)T* 

and T s = T*Ds. 

Because 
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i 
i 

I 

where 

p* = m ( l  - v ~ / c ~ ) - ~ / ~ ( ~  t C / c 2  + h/c2) ,  (3.10) 

the effects of the electromagnetic, gravitational, and thermal fields a r e  included 

in (3.8), as well as all relativistic effects. 

The last term on the right side of (3.8) ar ises  from the injection of heat into 

the fluid and vanishes when D s  = 0. The next-to-last term vanishes if  the specific 

entropy is everywhere the same. Thus if the flow is isentropic (DS = V s = 0), the 

relativistic Helmholtz equation for inviscid flow of a charged fluid in the presence 

of electromagnetic, gravitational, and thermal (enthalpy) fields reduces to the 

familiar form D ( V / p * )  = ( V / p * )  VV i f  the generalized vorticity is defined as in 

(3.9): 

( e x c e p t  i n  t h e  r a t i o  q / c ) .  
The nonrelativistic limit is obtained by letting c go to infinity/ Then p*- p ,  

T* -+ T ,  and (3.8) becomes 

D [ ( V x  v t qB/mc)/pl = [ ( V X  v t q B / m c ) / p ]  * VV t ( V T  x V s ) / p .  (3.11) 

(non  r e 1 a t i v i  s t i c )  

For B = 0 this is just the well-known Vazsonyi6 generalization of the Helmholtz 

equation for the case of nonisentropic flow of an uncharged gas. 

If we go to the limit m - 0 in (3.8), we have 

(3.12) 
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This is the equation that exyresses the fact that the magnetic field is "frozen 

into" a perfectly conducting fluid which, of course, is what we would have i f  the 

charge-carrying particles had zero mass. 

Having found a generalization of the Helmholtz equation that comes so close 

to the simple form D ( V / p * )  = ( V / p * )  - V V ,  we now pose the question whether i t  is 

possible to modify the definition of the vorticity V in such a way that this simple 

form of the equation will hold exactly. In the next section i t  will be shown that 

this is indeed possible, even when viscosity must be taken into account. The 

procedure consists of lumping together the entropy-dependent forces and the 

viscous forces and describing them in terms of a 4-vector function aJ whose 

dynamical effects a r e  completely analogous to those of the electromagnetic 4- 

potential AJ . When the definition of the canonical particle momentum is modified 

to include a contribution from aJ , we shall find that the vorticity, defined as the 

curl of this generalized canonical momentum, satisfies the simple form of Helm- 

holtz's equation exactly. 
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IV. GENERALIZED HELMHOLTZ THEOREM 

Using (5.13) of I in (1.36) above, the fluid equation of motion including vis- 

cosity ( ;Ik SIk J 0) becomes 

d(pvJ)/d-r = aJ(pc2)  t (q./c)FJk vk t nJ - m T a J s  t TJ,  (4.1) 

where nJ is the time rate of energy-momentum injection resulting from heat 

injection which, using the equations (2.20) and (5.13) of I, can be written 

711 z - (4 QJk) /p  = ( d c )  O J k  vk t m T a J s .  (4.2) 

is the viscous force. The symmetric tensors QJk and SJk  are, of course, the 

heat and viscous stress contributions respectively to the fluid stress-energy 

tensor. 

Using (1.5) and (2.2), we can cast (4.1) into the following form: 

It is obvious that the contraction of the left side of this equation with vj vanishes. 

Thus we conclude that 

v .  (nJ - m T aJ s t $) = 0. (4.5) 
1 

Because the force ( d  - m T aJ s + $ ) must satisfy this orthogonality condition, 

it can be expressed as the contraction of a suitably chosen antisymmetric tensor 
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with v k .  Thus we define the antisymmetric tensor f J k  by means of the follow- 

ing relation: 

( 4 . 6 ~ ~ )  

(4.Gb) 

it follows that the orthogonality condition (4.5) is automatically satisfied. Re- 

ferring to (4.2) and (4.3), it is evident that the defining equation for f J k  can also 

be written in either of the following forms: 

or  

Because of the analogy between f J and the electromagnetic field tensor FJ , 

the space-time components of f J k  will be designated as e and the space-space 

components as b : 

( f 2 3 ,  f3 ' ,  f I 2 )  z - b. (4.7b) 

The equation (4.Ga) specifies only , the value of e in the fluid r e s t  frame. 

It says nothing about b" . We can remove this indeterminancy by requiring that 

f j k  be the curl  of a 4-vector aj  : 
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Inasmuch as the addition to aj  of the 4-gradient of an arbi t rary scalar function 

has no effect on f J k  , the 4-vector aJ has only three significant degrees of free- 

dom, which corresponds to the fact that the 4-force ( n J  - rn T & s + ~ j )  has three 

degrees of freedom. (One degree of freedom is removed by the orthogonality 

requirement (4.5).) The equation of motion fo r  a'  follows from (4.6a) and (4.8): 

daJ/dT 1 v k 2 J a k  -(c/rn)(d - r n T a J s  +TI). (4.9) 

By introducing f J k  and a' we have placed the handling of the viscous and 

entropy-dependent forces on the same footing as the handling of the electromag- 

netic forces. In the case of the latter,  however, the appropriate field equations 

are Maxwells equations, whereas in the case of the former,  the "field equations" 

a r e  given by either (4.6) o r  (4.9). This point of view will be somewhat more 

fully developed in the following paper. 

Our present purpose , however, is to derive the generalized Helmholtz equa- 

tion. To this end we note that i f  we substitute (4.6a) into (4.4), the resulting 

equation of motion is just  the contraction of vk with the following equation: 

where VIk is the canonical vorticity defined in (2.5),  and w J k  is an arbitrary 

antisymmetric tensor that satisfies the orthogonality condition 

w J k  vk = 0 (4.11) 

which implies that uJk has the form 

(,lo, GJ*O, w34 = .- r / c ,  (4.12a) 
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(4.12b) 

where (4.12b) is the definition of the 3-vector o in terms of the components of 

w j k .  

The tensor 2 ,U W j  will play the role of a generalized vorticity, which we shall 

call the intrinsic vorticity: It can be written in the form 

where 

(4.13) 

(4.14) 

is the generalized canonical particle momentum that includes the contribution 

(m/c) aJ that arises from the viscous and entropy-dependent forces. 

Substituting (2.10) into (4.10), we ar r ive  at the generalized Larmor theorem: 

aJk = (q/2pc)FJk t (m/2pc) G I k  t ( m / 2 p c )  f j k  t dk.  (4.15) 

A comparison of this with (2.11) shows that 

Contracting this with vk and using (2.7) and (4.11), we have 

Thus f J k  differs from @ j k  a t  most by a tensor that is orthogonal to vk.  

The tensor v J k  was interpreted as the residual rotation, i.e. the rotation 

not produced by external forces,  but ra ther  associated with the initial conditions 
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of the fluid. From (4.15) it is evident that a similar interpretation may be as- 

signed to w J k .  To distinguish it from u J k  , we shall call w J k  the intrinsic (rather 

than the residual) rotation. Of these two tensors, which in general a r e  not equal, 

h j k  is the more fundamental. This follows from the fact that it is the flux of o 

(or more exactly, the flux of the intrinsic vorticity 2p*0) and not that of v that 

in general is conserved. We shall now prove this. 

From (4.13) it follows directly that 

which is equivalent to the following two equations: 

v .  (/.*a) = 0 ,  

0 ,  (4.18a) 

(4.18b) 

(4 .18~)  

where use has been made of (4.12). It is well-known7 that these two equations 

imply the validity of the following conservation law: 

D p*w dS = 0 
S 

(4.19) 

where D = @/at) + v - V is the substantial time differentiation operator, and the 

integral is taken over any surface S which moves with the fluid. Thus the flux 

of the intrinsic vorticity 2 passing through any closed loop that moves with 

the fluid never diffuses out of this enclosed area. It is easily verified that this 

would be true for the 2p*1, flux only i f  @Ik , like f J k ,  were expressible as the 

curl  of a 4-vector. 
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Because (4.18~)  lacks the two entropy-dependent te rms  that appear in ( 3 . 5 ) ,  

when we duplicate the steps that led from ( 3 . 5 )  to (3.8) starting now from ( 4 . 1 8 ~ ) ~  

we arrive at  the following simple form for the generalized Helmholtz equation: 

(The ratio p * / p *  could of course also be wri t tenplp,  but it seems more appro- 

priate to refer  everything to the observer's frame.) 

It is possible to give this generalized Helmholtz equation an interesting 

microscopic interpretation which will now be discussed. 

Microscopic Interpretation of Helmholtz Equation 

We may take the point of view that the mass ,u* of each of the p* particles 

that occupy unit volume of the fluid is uniformly distributed over a volume U, 

= l/p which for the sake of simplicity we may consider to have the form of a 

right cylinder of height 4 and cross-sectional a rea  fi. We assume that at some 

given instant of time the axes of the particle-cylinders are all parallel to the 

local value of the intrinsic rotation W ,  and that the cylinders a r e  rotating about 

their axes with the angular velocity W .  The total angular momentum of any 

particle may be regarded as the sum of its external and internal parts. The 

external p a r t  is just the angular momentum about some specified origin of a 

point mass ,u* located at  the center of the particle-cylinder. It thus depends 

only on the position and displacement velocity of the cylinder, but not on its 

rotation about its own axis. The internal angular momentum u is just the product 
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of the angular velocity w of the cylinder and its moment of inertia which is 

u = p"0/(27r/ep"). (4.21) 

We further stipulate that the ends of each particle-cylinder be fixed in the 

fluid. Thus i f  e is the vector connecting the two ends of the cylinder, it must 

obey the well-known equation8 for the time dependence of the vector displace- 

ment between two neighboring fluid particles: 

(4.22) 

But this equation has the same form as (4.20). This implies that 

(4.23) p*w/p* = K t  

where K is a constant along the trajectory of any given particle, i.e. DK = 0. 

Thus if  at any instant of time the axis of a particle-cylinder is parallel to the 

local value of W, then as the cylinder is swept along with the fluid it will  find 

that its orientation is always such that its axis is parallel to the local value of 

W. Although the direction of u changes in general as the cylinder is carried along 

with the fluid, its magnitude I Q I  is constant. This follows from (4.23): 

u = p*w/(277Xp*) 1 (K ' 2 ~ )  e , .  (4.24) 

where e ,  is the unit vector along the cylinder axis. Because DK = 0, we have 

then 

D ( a  I = D(K ' 2 n )  = 0 .  
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The behavior of a particle-cylinder whose two ends a r e  fixed to the fluid 

points A and B is illustrated in Figure 1. A s  the particle-cylinder is carried 

along with the fluid, it changes (in general) its size and shape, and hence i ts  

moment of inertia, but the magnitude of its internal angular momentum CJ = I io j 

remains constant, which means that the moment of inertia must vary inversely 

with / W  !. 

Note that the internal angular velocity of the particle-cylinders is the in- 

trinsic angular velocity w and not the fluid rotation Q .  These two differ by the 

precession produced by the external fields. We conclude then that the external 

fields a r e  unable to apply a torque about the axis of any given particle-cylinder. 

Because of this its angular momentum u is conserved except for the fact that, 

because the cylinder is embedded in the fluid, the axis of the cylinder, and hence 

the direction of o , changes with time. Thus, i f  the particle-cylinders do not have 

any internal angular momentum, there is no way in which they can acquire it. 

This, of course, corresponds to the well-known implication of the Helmholtz 

equation that, if the intrinsic vorticity 

trajectory, it must be zero along the entire trajectory. 

vanishes a t  any point on a particle 

It would be of interest to derive the equation of motion of o . From (4.20) 

and (4.21) 

Do = o * V v  - o(DX)/X. 

Using (4.22) we  find 
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(4.27) 



Figure 1-Behavior of a particle-cylinder being swept along with the fluid. 
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Thus (4.26) becomes 

or  

(4.28 a) 

(4.28b) 

The second of these two equations shows that the motion of u may be regarded 

as a precession with the (P -dependent angular velocity -( u V V  ) x u /a2.  

The dependence of the motion of u on the fluid velocity can be made more 

explicit by rewriting (4.28a) in the following form: 

where 9 is the symmetric fluid distortion dyadic given by 

9 1- 1 [ O v  + ( o v > c l ,  
2 

(4.2 sa.) 

(4.2 9b) 

where ( V v  )= is the conjugate (or transposc) of O v  . The second term on the right 

1 side of (4.29a) is simply a precession of an@ar velocity - (V / V )  , which is 
2 

the nonrelativistic fluid rotation. Thus this term is simply the precession of the 

internal angular momentum that results because the axis of the particle-cylinder is 

imbedded in the fluid and must rotate with it. The first t e r m  on the right side of 

(4.29a) describes the change in the orientation of the cylinder axis (and hence 

of u ) that results from fluid distortion. 
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The precession - v x v may also be expressed in te rms  of the external 
P 

fields. Using (1.4b), ( 1 . 1 6 ~ ) ~  ( 1 . 3 7 ~ ) ~  (4.7b), and (4.12b) in (4.15) we find 

(4.30) 1 - V r  
2 

= - ( ~ , u * c ) - '  { q B  t [mV(G + h )  + p m 2 1  x v / C  t mb) t W .  

Because w and u a re  parallel, w x u = 0. Thus the precession velocity of u in 

(4.29a) is given by the first  term on the right side of (4.30). The middle term 

inside the braces is a relativistic precession which results from the gravita- 

tional, thermal, and Bernoulli forces, and which vanishes in the rest  frame of 

the fluid. 

Equation (4.21) can be used to estimate the magnitude CJ of the internal 

angular momentum, if we assume that 4 

the order of the proton mass,  we find that for laboratory and astrophysical 

problems 

'Uij'3 = ( p * ) - 1 / 3 .  Taking p* to be of 

0 ~5 e r g - s e c .  (4.3 1) 

It is interesting to note that i f  we were to take a classical hydrodynamical view 

of a large nucleus, assuming that w - 0 . 1  c / R  where the nuclear radius R is of 

the order  of 

Planck's constant. The angular momenta that one encounters in nuclear and 

atomic problems are ,  of course, of the order of magnitude of R. Thus the in- 

ternal angular momentum CT that we  encounter in classical problems is much 

smaller  than the typical magnitude of the angular momentum per particle that 

we encounter in atomic and nuclear problems, and would approach this magni- 

tude only if we were to attempt to apply the classical formalism to problems 

of atomic and nuclear dimensions. 

cm, then we would find that 0 -5 2 erg-sec, where h is 
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V. CONCLUSIONS 

The formalism based on the description of the viscous and entropy-dependent 

forces in terms of a 4-potential a J  that is analogous in its dynamical effects to 

the electromagnetic 4-potential has two advantages over the formalism based on 

the entropy force tensor O J k :  First ,  the 4-potential aJ can be used to describe 

the viscous as well as the entropy-dependent forces. Second, the intrinsic vor- 

ticity 2 p * w  in the aJ -formalism is more fundamental than the canonical vorticity 

'J x ( p * v  + q A  / c )  that enters into the OJk-formalism in that the Helmholtz equa- 

tion in the former case yields an exact conservation law for the 2p*b flux 

whereas the canonical vorticity flux in the latter case is not in general conserved. 

The most interesting feature of the a' -formalism, however, is that it allows the 

fluid equation of motion to be cast  into the form of a generalized Hamilton-Jacobi 

equation, whose derivation is given in the following paper. 
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